Models for nuclear smuggling interdiction
نویسندگان
چکیده
منابع مشابه
Models for nuclear smuggling interdiction
We describe two stochastic network interdiction models for thwarting nuclear smuggling. In the first model, the smuggler travels through a transportation network on a path that maximizes the probability of evading detection, and the interdictor installs radiation sensors to minimize that evasion probability. The problem is stochastic because the smuggler’s origin-destination pair is known only ...
متن کاملPrioritizing Network Interdiction of Nuclear Smuggling
We develop a stochastic network interdiction model for prioritizing locations for installing radiation detectors along a nation’s border. In this one-country model, we characterize the smuggler population by a set of possible threat scenarios, where the identity of the smuggler is unknown at the time we install detectors. Detector performance depends on the threat scenario, as well as a number ...
متن کاملInterdiction Modeling for Smuggled Nuclear Material
We describe a stochastic interdiction model on a transportation network consisting of two adversaries: a nuclear-material smuggler and an interdictor. The interdictor first installs radiation detectors on the network. These installations are transparent to the smuggler, and are made under an uncertain threat scenario, which specifies the smuggler’s origin and destination, the nature of the mate...
متن کاملInterdiction Models and Applications
Through interdiction models, we infer the vulnerabilities inherent in an operational system. This chapter presents four applications of interdiction modeling: (i) to delay an adversary’s development of a first nuclear weapon; (ii) to understand vulnerabilities in an electric power system; (iii) to locate sensors in a municipal water network; and (iv) to secure a border against a nuclear smuggle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IIE Transactions
سال: 2007
ISSN: 0740-817X,1545-8830
DOI: 10.1080/07408170500488956